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I. МЕТОДЫ ХЛОРМЕТИЛИРОВАНИЯ И ОБЛАСТИ ПРИМЕНЕНИЯ РЕАКЦИИ

Хлорметилирование является частным и наиболее важным случаем
галогеналкилирования. Оно заключается в непосредственном замеще-
нии атома водорода на хлорметильную группу. При этом могут заме-
щаться атомы водорода, связанные не только с углеродом, но и с гете-
роатомами (см. например 1 - 5). Однако наибольшее значение имеет
хлорметилирование по атому углерода ароматического или гетероаро-
матического кольца, которое и будет рассмотрено ниже.

Впервые хлорметилирование в ароматическом ряду было осуществ-
лено в 1898 г. Грасси и Мазелли 6, которым удалось получить хлористый
бензил взаимодействием бензола с триоксиметиленом и хлористым во-
дородом в присутствии хлористого цинка. В настоящее время хлорме-
тилирование является одним из важных синтетических методов органи-
ческой химии.

Ниже будут обсуждены главным образом работы последних 10—
15 лет, так как основные достижения в этой области приблизительно до
1962 г. освещены в обзорах7"9. При этом, касаясь использования став-
ших уже классическими методов хлорметилирования, мы будем, как
правило, ограничиваться лишь ссылками на соответствующие статьи
и патенты, опубликованные после 1962 г. Сравнительно подробно будут
рассмотрены работы, в которых обсуждается механизм реакции, а так-
же некоторые специфические примеры и методы хлорметилирования,
получившие значительное развитие за последнее время. Это хлормети-
лирование дезактивированных ароматических и гетероароматических со-
единений, в особенности, с использованием хлорметиловых эфиров.

Судя по материалам, приведенным в обзорах7"9, результат рассмат-
риваемой реакции в сильной степени зависит от природы хлорметили-
рующего агента, катализатора и условий процесса. Эффективными хлор-
метилирующими агентами являются формальдегид, параформальдегид
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или триоксиметилен с хлористым водородом, а также монохлорметило-
вый и а.а'-быс-хлорметиловый эфиры. Реакция проводится в присутст-
вии ZnCl2, SnCl4, А1СЦ, BF3, FeCl3, TiCl4, а также протонных кислот —
HC1 (которая берется в избытке и одновременно является реагентом),
H2SO4, Н3РО4, C1SO3H, CH3COOH. Чаще всего применяется хлористый
цинк. Для увеличения активности его часто сплавляют с небольшим
количеством хлористого алюминия. Однако использование А1С13 в каче-
стве катализатора может повлечь за собой образование побочного про-
дукта— производного диарилметана, поэтому хлористый алюминий при-
меняется в основном для соединений, несущих дезактивирующие заме-
стители, когда хлористый цинк может оказаться недостаточно эффек-
тивным. При проведении хлорметилирования в присутствии галогенидов
металлов выделяющаяся вода гидролизует катализатор. Чтобы связать
образующуюся воду, в реакционную смесь иногда добавляют хлоран-
гидриды неорганических кислот, например хлористый тионил 10· и . Хлор-
метилирование может проводиться как в гетерогенных условиях, так и
в гомогенных. Широко используемыми растворителями являются
СНзСООН, СС14, СНС13, СН2С12, CS2, а также избыток хлорметилового
эфира.

Хлорметильная группа, обладая подвижным атомом хлора, может
быть превращена в метальную, оксиметильную, цианметильную, фор-
мильную, диалкиламинометильную и другие функциональные группы.
Этим путем удается получать ряд труднодоступных соединений, в част-
ности биологически активных, и вещества, используемые в качестве про-
межуточных соединений в различных синтезах, например, в ряду бензо-
ла 12~15, дифенила 1В, тиофена 17~24, фурана 2\ бензофурана 26, изоксазо-
ла 27, оксазина 18, бензоксазина 29, бензпиримидина 30, ксантотоксина 31, a
также хромонов 32 и флавонов 3 3 · 3 4 . Взаимодействие быс-хлорметилзаме-
щенных с различными нуклеофильными агентами может приводить не
только к бифункциональным соединениям, но и к сложным би- и поли-
циклическим системам (см., например,35-41). Некоторые хлорметилза-
мещенные ароматического ряда нашли промышленное применение. Изо-
тиурониевые и пиридиниевые соли антрахинонакридонов 42, полученные
из хлорметилзамещенных, используются как красители. На основе мо-
но- и быс-хлорметильных производных ароматических углеводородов
разработаны технические синтезы пиромеллитового диангидрида, три-
меллитового ангидрида 43, терефталевой кислоты 4\ фталевой и бензол-
поликарбоновых кислот45, поверхностно-активных веществ46 и др. За
последнее время существенное значение приобрело применение реакции
хлорметилирования для производства ионообменных смол 47-49.

II. ХЛОРМЕТИЛИРОВАНИЕ ДЕЙСТВИЕМ ФОРМАЛЬДЕГИДА
И ХЛОРИСТОГО ВОДОРОДА

Наиболее часто хлорметилирование проводится с помощью формаль-
дегида (обычно в виде формалина или параформа) и хлористого водо-
рода в водной или безводной среде. Хлорметилирование формальдеги-
дом и НС1 в свое время было широко разработано Бланом 50, что дало
основание назвать эту реакцию его именем7·51, хотя условия процесса
не отличаются от описанных в работе Грасси и Мазелли 6. Обычно в ка-
честве катализатора используется хлористый цинк5 2-5 8, реже — хлорное
олово59 и хлористый алюминий57. Однако при введении группы СН2С1
в ароматические соединения, содержащие активирующие заместители,
роль катализатора может выполнять хлористый водород " · 6 0 - 6 9 ; в неко-
торых случаях реакцию ведут под давлением 43. С успехом применяют-
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ся в качестве катализаторов другие протонные кислоты — серная 70,
фосфорная 5е· ", хлорная 58. Рассматриваемый способ хлорметилирова-
ния применим и к соединениям, несущим одновременно с активирующи-
ми и дезактивирующие заместители, например, к эфирам оксибензойных
кислот71"74, диметоксибензальдегидам 75. К упомянутым работам близки
исследования по хлорметилированию в бензольное кольцо конденсиро-
ванных частично гидрированных систем 2-бензофуранона и 3,4-дигидро-
кумарина 7 б · 7 7 , феноксантиина 78. В качестве примеров хлорметилирова-
ния гетероциклов действием формальдегида и НС1 могут быть упомяну-
ты реакции эфиров пирослизевой кислоты79, 2,5-диметилтиофена 80, 2-
фенилбензофурана 81, 1,2,5-тиадиазола 82, замещенного α-пиридона 83, а
также производного тетрагидрокоррина 84.

Хлорметилирование дезактивированных ароматических соединений
действием формальдегида и НС1 часто проводят в концентрированной
серной кислоте 85~88. В некоторых случаях реакция проводится в отсут-
ствие НС1; при этом хлорметилирующую смесь готовят из параформаль-
дегида, хлорсульфоновой и концентрированной серной кислот8 9· s o.

Специфические трудности возникают при хлорметилировании алкил-
арилкетонов. При отсутствии активирующих заместителей в бензольном
кольце, как и в случае диалкилкетонов (см., например,91) замещение
происходит в α-положение боковой цепи. Например, хлорметилиро-
вание ацетофенона в боковую цепь осуществляется при действии пара-
формальдегида и НС1 в ледяной уксусной кислоте при 100° в присутст-
вии фосфорной или серной кислоты э2~95. Применение параформальдеги-
да и концентрированной соляной кислоты в уксусной кислоте в присут-
ствии 70% НС1О4 позволяет ввести в метильную группу ацетофенона
две СН2С1-группы 96.

Вполне вероятно, что хлорметилирование в боковую цепь идет по та-
кому же механизму, по которому протекает реакция Принса 97~99—кон-
денсация формальдегида с олефинами в присутствии катализаторов кис-
лотного характера. В этой реакции в результате взаимодействия фор-
мальдегида с катализатором возникает оксиметильный катион, который
далее атакует двойную связь олефина. В присутствии НС1 может обра-
зоваться хлорметилзамещенное, например, при действии параформаль-
дегида и НС1 в уксусной кислоте 1,1-дифенилэтилен превращается в 3-
хлор-1,1-дифенилпропен-1 10°.

По нашему мнению, в случае алкиларилкетонов катион (СН2ОН) +

атакует енольную форму кетона, затем вновь образовавшийся катион
стабилизируется путем отщепления протона и далее оксигруппа заме-
щается на хлор. Этот процесс можно представить следующей схемой:

СН2О + НХ ̂  НОСН2 -Ь X-

О ОН
!1 I

R C — C H 3 ^ R — С = С Н 2
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R-C-CH 2 CH 2 OH — » R-C=CHCH2OH
+

он о
I II

R-C=CHCH 2OH + НС1 -» R-C-CH 2CH 2CI
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Существенно отметить, что введение электронодонорных заместите-
лей в бензольное кольцо алкиларилкетона изменяет направленность
хлорметилирования — группа СН2С1 вступает не в боковую цепь, а в аро-
матическое кольцо 9 2 '1 0 1-1 0 6. В этой связи становится понятным, почему
ацилзамещенные активированных гетероароматических систем — фура-
на 107, тиофена 108~114 и селенофена 11S — также хлорметилируются в ядро.

Хлорметилирование является типичной реакцией электрофильного
замещения. Как показали Назаров и Семеновский 118, при хлорметили-
ровании, как и при других реакциях электрофильного замещения (ни-
трование, галогенирование), количество образующегося лега-хлорме-
тилзамещенного увеличивается в ряду:

С6Н6СН3 < СвН5СНгСООС2Н, < С6Н6СН2С1

В случае хлорметилирования галогенбензолов наблюдается посте-
пенное увеличение образования орто-изомера при переходе от фторбен-
зола к иодбензолу и 6 . Аналогичная картина изменения соотношения изо-
меров имеет место, например, при нитровании галогенбензолов 117. Изу-
чение соотношения изомеров, полученных при хлорметилировании ал-
килбензолов И6·118· "9, показало, что распределение образующихся изо-
меров полностью подчиняется закономерностям, установленным для
других реакций электрофильного замещения. Хлорметильная группа
вступает, главным образом, в пара- и орго-положения. Замещение в
лега-положение наблюдается в незначительной степени, причем отно-
сительная доля жега-изомера возрастает для алкилбензолов с увеличе-
нием алкила в ряду: СН3-<С2Н5-<мзо-С3Н7<77?ег-С4Н9. Например, при
хлорметилировании толуола образуются лишь следы лгега-хлорметилза-
мещенного, тогда как грег-бутилбензол дает 6,1% мета-трет-бутплбек-
зилхлорида 119.

Путем сравнения результатов хлорметилирования116· 120 толуола,
этилбензола, кумола и других углеводородов, отличающихся объемом
алкильного заместителя, установлено, что количество орго-изомера
уменьшается от 51,7% До 0% в ряду СеН5А1к, где Alk=CH 3 , С2Н5, н-С3Н7,
я-С4Н9, мзо-С4Н9, цикло-СцНп, изо-С3Н7, грег-С4Н9 *. Это явление связа-
но с ростом пространственных препятствий в орто-положении при пере-
ходе от толуола κ трет-бутилбензолу. Такое же закономерное пониже-
ние количества о/?го-изомера характерно для других реакций электро-
фильного замещения 121.

Следует отметить, что имеющиеся в литературе количественные дан-
ные по значениям относительных скоростей хлорметилирования арома-
тических углеводородов на первый взгляд весьма противоречивы. Так,
полученное соотношение скоростей хлорметилирования толуола и бен-
зола (kT/k5) изменяется в очень широких пределах — от 3 1 2 2 · i 2 3 до 30 124

и даже до 112125. Следует, впрочем, отметить, что в работах 1 2 2-1 2 5 реак-
ции проводились в разных условиях и использовались различные хлор-
метилирующие агенты. Кроме того, по нашему мнению, в работах 122· 123

применен недостаточно совершенный метод анализа, и вполне могли
быть допущены ошибки при определении концентрации ионов хлора.

Авторы работы 122 использовали для хлорметилирования монохлор-
метиловый эфир в ледяной уксусной кислоте при 100° и измеряли ско-
рость реакции по количеству НС1, выделившегося при гидролизе непро-
реагировавшего эфира. В работе 123 реакция осуществлялась при дейст-
вии параформальдегида и НС1 в ледяной уксусной кислоте при 85°. За
кинетикой наблюдали по изменению концентрации хлорид-иона в про-

В работе 119 обнаружены следы орго-грег-бутилбензилхлорида.
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цессе реакции. Браун и Нельсон 1 2 5 не смогли воспроизвести результаты
работ 122· ' 2 3 и провели реакцию в других условиях, а именно, применяя
триоксиметилен и газообразный НС1 в присутствии хлористого цинка в
качестве катализатора в растворе ледяной уксусной кислоты при 60°.
Величина kjk5 была найдена методом конкурирующих реакций на ос-
нове количественного определения соответствующих углеводородов, вы-
деленных после восстановления хлорметилзамещенных алюмогидридом
лития*. При полученном в 1 2 5 отношении констант скоростей &т/&б=112
для хлорметилирования, как и для других реакций электрофильного
замещения, соблюдается линейное соотношение между логарифмами
факторов парциальной скорости замещения в яара-положение (lg/P) и
факторами селективности Fs = \g(Jflfm), где fm — фактор парциальной
скорости замещения в игега-положение.

Тот факт, что хлорметилирование является реакцией электрофиль-
ного замещения, согласуется и с величиной реакционной константы ρ
порядка — 5 , определенной в ' " , 126. В этих работах в качестве хлорме-
тилирующего агента применяли параформальдегид с соляной кислотой.
Реакционную смесь анализировали на содержание в ней соляной кисло-
ты и формальдегида через определенные промежутки времени. Изомер-
ный состав хлорметилзамещенных определялся после их каталитическо-
го восстановления в соответствующие полиметилбензолы. Эксперимен-
тальные значения относительных скоростей удовлетворительно совпада-
ют с данными, рассчитанными по методу Кондона 127 на основании фак-
торов парциальных скоростей замещения в орто-, мета- и пара-положе-
ния толуола.

Попытки выяснить механизм хлорметилирования действием фор-
мальдегида и НС1 делались неоднократно. Дарзан 1 2 8 считал, что аген-
том хлорметилирования при проведении реакции в уксусной кислоте
является хлорметилацетат С1СН2ООССН3.

СН2О + CHSCOOH + HC1 -> С1СН2ООССН3 + Н2О
АгН + С1СН»ООССН3 -> АгСН2С1 + СН3СООН

Однако Браун и Нельсон 125 показали, что взаимодействие бензола
с этим реагентом при 75—80° в течение 16 часов без добавления ката-
лизатора и в течение 4 часов с хлористым цинком не дает хлористого
бензила. Хлорметилацетат может быть применен для хлорметилирова-
ния бензола, если выдерживать смесь в течение 100 часов.

При взаимодействии СН 2 О и НС1 может образоваться СН2С12, одна-
ко и он не является хлорметилирующим агентом: попытка хлорметили-
ровать бензол хлористым метиленом в присутствии хлористого цинка
оказалась безуспешной 1 И . Авторы работы 13° считали, что хлорметили-
рующим агентом является α,α'-бис-хлорметиловый эфир, образующийся
при взаимодействии СН 2О и НС1. Действительно, как будет показано в
следующем разделе, образование быс-хлорметилового эфира наиболее
вероятно при хлорметилировании в жестких условиях малоактивных
соединений. Вместе с тем для хлорметилирования в мягких условиях,
особенно в водных растворах, следует рассмотреть иные возможности.

Наряду с указанным выше, для реакции хлорметилирования предла-
галось также два ионных механизма. Первый из них ш предусматрива-

* Согласно недавно опубликованным данным284, использованный в работе 125 ме-
тод анализа приводит к завышенному значению кт/кб. Как можно судить по резуль-
татам, полученным с помощью ГЖХ непосредственно для смесей хлорметилзамещен-
ных, образующихся в условиях конкурирующих реакций284, эта величина составляет
около 30 (ср. 1 2 4 ) .
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ет в качестве атакующей частицы (СН2С1)+, которая может образоваться
на первой стадии в соответствии со следующей схемой реакции:

СН2О + НС1 + Н+ ̂ ± СН2ОНС1 + Н+ q± СН2С1 + Н2О

АгН + СН2С1-> АгСН2С1 + Н+

Согласно этой схеме, скорость реакции должна описываться уравнением
dx + [АгН] · |СН2О] · [НС1] · [Н+]

- Й [АгН] · [U-|2U] = kKiKi - 7 —
Q ί [rloUJ

где Kin Κι — константы равновесия; k — константа скорости.
Однако приведенная схема противоречит экспериментальным дан-

ным 132: при проведении реакции в среде H2SO4 в отсутствие или в при-
сутствии хлорид-иона (LiCl) константа скорости реакции практически
одинакова, т. е. наличие хлорид-иона не влияет на скорость. Между тем
при протекании реакции по обсуждаемой схеме такое влияние должно
было бы наблюдаться, поскольку в уравнение скорости реакции входит
концентрация НС1. Скорость реакции хлорметилирования на основании
этой схемы должна описываться уравнением реакции третьего порядка,
что также противоречит экспериментальным данным 133.

Наиболее обоснованным в настоящее время следует считать другой
механизм реакции, который предполагает образование оксиметильного
катиона [СН2ОН]+ и последующую атаку этого катиона на ароматиче-
ское соединение; в следующей стадии гидроксильная группа замеща-
ется на атом хлора, в результате чего образуется конечное соедине-
ние 1 3 2 · 1 3 4 · 1 3 5 . Вывод о том, что атакующей частицей является именно
оксиметил-катион, сделан в 134, на основании, в частности, того факта,
что при бромметилировании и хлорметилировании толуола, этилбензола
и кумола наблюдается образование орто- и пара-изомеров с одинако-
вым соотношением. Это указывает на то, что в обоих случаях действует
одна и та же атакующая частица, представляющая собой протониро-
ванную форму формальдегида [СН2ОН]+ *. Если бы реакции протекали
с участием галогенметильных ионов, то при бромметилировании долж-
но было бы быть больше ηαρα-изомера, чем при хлорметилировании,
так как объем бромметильной группы существенно больше, чем хлор-
метильной. Кроме того, было показано 134, что в условиях хлорметили-
рования оксигруппа в бензиловом спирте полностью замещается на
хлор.

Подтверждением этого вывода являются кинетические исследования,
выполненные Огато и Окано1 3 2 на примере хлорметилирования мези-
тилена действием формальдегида и НС1 в 90%-ной водной уксусной
кислоте и Фарберовым с сотр.135 на примере хлорметилирования кси-
лолов и псевдокумола действием параформа и соляной кислоты. Пред-
ложена следующая схема хлорметилирования 135:

быстро +

СН.О -|- Н+ СН 2 ОН

к

АгН + СН 2ОН ^ 1 ' . ΐ £ [ДгНСНоОН]

[АгНСН2ОН] -9 АгСН2ОН + Н+

АгСНоОН + НС1 б ы с т р ° -> АгСН2С1 + Н 2 О

* В этой связи интересно заметить, что при равновесии в кислых средах ( р Н < 2 , 6 )
формальдегид присутствует в виде оксиметил-катиона 1 3 6.



1704 Л. И. Беленький, Ю. Б. Волькенштейн, И. Б. Карманова

Если предположить, что лимитирующей стадией является присоединение
протонированной формы формальдегида к молекуле ароматического уг-
леводорода, то кинетический анализ приводит к следующему выраже-
нию для скорости реакции:

~ = k [АгН] · [СН2ОН] = k • К [АгН] · [СН2О] · [Н+] = KF [ArH] · [СН2О]

где k — константа скорости, К — константа равновесия, Дг.=
После логарифмирования этого последнего уравнения получается со-

отношение:
lg KF = — Но + const

где Но—функция кислотности Гаммета.
Экспериментальные данные подтверждают предложенную схему, так

как было обнаружено, что скорость реакции прямо пропорциональна
произведению [АгН]-[СН2О]. В работе1 3 5 получена прямолинейная зави-
симость между логарифмом константы скорости и функцией кислотно-
сти Гаммета для монохлорметилирования ж-ксилола и псевдокумола
при действии параформа и соляной кислоты. Большое влияние на ско-
рость хлорметилирования оказывает концентрация соляной кислоты,
молярное соотношение соляной кислоты, углеводорода и формальдеги-
да. Этот факт подтверждает кислотно-каталитический механизм реак-
ции.

Детальные исследования показали, что монохлорметилирование м-
ксилола и псевдокумола действием (СН2О)„ и НС1 при постоянной функ-
ции кислотности #о описывается кинетическим уравнением второго
порядка, что подтверждает последнюю схему 135. При проведении реак-
ции в различных растворителях — муравьиной, уксусной, пропионовой,
я-масляной кислотах и диоксане было обнаружено, что скорость хлор-
метилирования в присутствии алифатических кислот значительно выше,
чем в диоксане и воде 137. По мнению авторов, это явление объясняется
образованием протонированной формы алифатической кислоты, которая
обладает высокой протонодонорной способностью. В результате возра-
стает концентрация [СН2ОН]+ и увеличивается скорость лимитирующей
стадии процесса (2). Если реакция проводится в уксусной кислоте в
присутствии хлористого цинка, то последний с СН3СООН образует ком-
плексную кислоту H2[ZnCl2(OCOCH3)2], не уступающую по силе мине-
ральным кислотам 138. Ускорение процесса объясняется повышением кис-
лотности среды, приводящей к увеличению концентрации ионов
[СН2ОН]+ 139.

Механизм хлорметилирования действием СН2О и НС1 в присутствии
хлористого цинка в качестве катализатора может быть представлен сле-
дующим образом 8:

СН2О + НС1 + ZnCl2 ^Г~*~ [ C H J O H ] ^ Z11CI3

АгН + [сН2Он] + ZnClj ^ V V \ ZnClJ ^ V АгГ.Н2С1 +ZnCl2+H2O •

сн2о-ЛпС12 Ц- / \ ^ cijZn-o-i-Zj^) ~ί- /γ-слца + н2о+ znci,
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Наряду с образованием монохлорметилзамещенных в виде примеси
образуются и бис-хлорметилзамещенные. Проводя реакцию при опреде-
ленном соотношении реагентов, можно направить ее в сторону образо-
вания бмс-хлорметилзамещенных. Например, для б«с-хлорметилирова-
ния ксилола и псевдокумола 135 при 95° требуется значительный избы-
ток соляной кислоты (8—10 молей) и параформа (4—6 молей) по срав-
нению со стехиометрическим количеством. Исследований по кинетике и
механизму образования бмс-хлорметилзамещенных проводилось очень
мало. Согласно сообщению авторов 14°, реакция хлорметилирования мо-
нохлорметилксилола описывается уравнением нулевого порядка. Одна-
ко авторы работы U i на основании изучения кинетики образования про-
дуктов быс-хлорметилирования м- и «-ксилолов предложили для этой
реакции такой же механизм, как и для монохлорметилирования; полу-
ченные кинетические зависимости обработаны по уравнению второго
порядка для кислотно-каталитических реакций.

Наиболее важной побочной реакцией при хлорметилировании явля-
ется образование диарилметанов в результате дальнейшей конденсации
исходных соединений и полученного хлорметилзамещенного. Имеется
сообщение, что образование производных диарилметана можно затор-
мозить, применяя в качестве катализатора хлористый мышьяк или его
окись 142. В некоторых случаях эта реакция может представлять само-
стоятельный интерес, так как на ее основе получают полиметилбензолы
(в результате гидрокрекинга соответствующих диарилметанов143), бен-
зофенонполикарбоновые кислоты и их ангидриды 144. На примере изуче-
ния кинетических закономерностей хлорметилирования псевдокумола и
ж-ксилола и дальнейшего синтеза диарилметанов в присутствии л-толу-
олсульфокислоты показано, что реакция конденсации описывается урав-
нением второго порядка 133 (первый порядок по [СН2О] и первый поря-
док по [НС1]). Самой медленной стадией, определяющей общую ско-
рость реакции, как и в случае хлорметилирования, является присоеди-
нение оксиметил-катиона к молекуле ароматического углеводорода 133.

Недавно высказано предположение 145, что активной хлорметилиру-
ющей частицей является протонированная форма гипотетического хлор-
метанола (С1СН2ОН2). Механизм в целом может быть изображен схе-
мой 145, близкой к ранее предложенной 146:

СН2О +2НС1 -f ZnCl, iz ClCH2OHoZnCl~

Этот механизм не противоречит кинетическим данным, обсужден-
ным выше (первый порядок по [СН2О] и [АгН], однако вызывает ряд воз-
ражений). Прежде всего, сами авторы, предложившие его 145, установили,

что частица С1СН2ОН2 даже в очень кислой среде существует только при
температурах ниже —65°. В подобных температурных условиях хлор-
метилирование в принципе возможно (см., например,147), однако обыч-
но эту реакцию проводят при более высокой температуре. С другой сто-
ронц, приведенный механизм предусматривает непосредственное вступ-
ление в ароматическое кольцо группы СН2С1, а не СН2ОН. Ряд аргу-
ментов против такой точки зрения был рассмотрен выше. Кроме того,

13 Успехи химии. № 9
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существуют прямые экспериментальные данные в пользу первичного
образования оксиметилзамещенных, которые лишь на более поздних
стадиях превращаются в продукты хлорметилирования 106· иа.

III. ХЛОРМЕТИЛИРОВАНИЕ ДЕЙСТВИЕМ ХЛОРМЕТИЛОВЫХ ЭФИРОВ

1. Условия и особенности применения реакции

Другой важной группой хлорметилирующих агентов являются хлор-
метиловые эфиры, главным образом, монохлорметиловый (МХМЭ) и
α,α'-бмс-хлорметиловый (БХМЭ) эфиры. Впервые хлорметилирование
хлорметилалкиловыми эфирами описано Соммле 149. Действием а-моно-
галогеналкиловых эфиров на бензол в присутствии А1СЦ в CS2 была по-
лучена смесь бензилового эфира и хлористого бензила. По мнению ав-
тора 14Э, первичным продуктом является эфир, который легко превраща-
ется в хлорметилзамещенное под действием НС1, выделяющегося в ходе
реакции.

А1Г1

ArH + C1CH2OR ~ ^ ArCH2OR
HCI

ArCH2OR * ArCH2Cl

В качестве катализатора этой реакции помимо А1С13 использовались
ZnCl2, SbCls, SnCl4; наиболее удобным автор считал SnCl4. Хлористый
алюминий обычно вызывает дальнейшие реакции конденсации с образо-
ванием дифенилметана и высокомолекулярных продуктов.

Вавон и Боль 150 предложили проводить хлорметилирование арома-
тических углеводородов в гомогенных условиях, а именно действием
МХМЭ в уксусной кислоте без катализатора. При этом, однако, реак-
ция идет значительно медленнее, чем с катализатором. Можно было
ожидать, что при действии МХМЭ в СН3СООН параллельно хлормети-
лированию может иметь место реакция ацетоксиметилирования, так как
растворы МХМЭ в СН3СООН содержат метоксиметилацетат 151. Однако
продукт ацетоксиметилирования мезитилена выделен не был. Как ука-
зано выше, образующийся замещенный бензилацетат легко расщепля-
ется выделяющимся НС1 или МХМЭ 1М. Локк 129 показал, что оптималь-
ные условия для хлорметилирования действием МХМЭ создаются при
проведении его в присутствии хлористого цинка как катализатора, в ге-
терогенной среде с использованием избытка ароматического соединения
в качестве растворителя.

Хлорметилирование о^а'-быс-хлорметиловым эфиром впервые также
было осуществлено при получении хлористого бензила и родственных
ему соединений 13°. В качестве хлорметилирующего агента использовал-
ся неочищенный продукт, полученный при действии хлористого водоро-
да на параформальдегид или водный раствор формальдегида, который,
как показал Тищенко 152, содержит в основном БХМЭ *. В этой смеси
присутствует также некоторое количество МХМЭ, так как формальде-
гид обычно содержит примесь метанола 1 5 6 · 1 5 7 , а взаимодействие СН3ОН,
СН2О и НС1 является, как известно, препаративным методом синтеза
МХМЭ 158-160.

Показано 1 в |, что смесь, получающаяся при пропускании НС1 в фор-
малин, содержит, помимо МХМЭ и БХМЭ, б«с-хлорметилацеталь фор-
мальдегида СН2(ОСН2С1)2, который тоже способен служить хлормети-
лирующим агентом. Этот вывод был сделан при изучении хлорметили-

* Найдено, что при взаимодействии формальдегида и НС1 в газовой фазе также
образуется БХМЭ 1 5 3 " 1 5 5 .
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рования селенофена и его гомологов. Интересно отметить, что, по дан-
ным 16i, с помощью БХМЭ, специально приготовленного и очищенного
по методике 16Z, при проведении реакции в СН3СООН не удалось полу-
чить хлорметилзамещенных селенофена. На наш взгляд, этот факт объ-
ясняется тем, что в реакционной смеси отсутствует НО, который обычно
играет роль катализатора. Более того, БХМЭ, полученный по методу 162,
содержит параформальдегид, а, по мнению авторов работы 163, основа-
ния и псевдооснования (уротропин, диметилформамид, параформальде-
гид) тормозят реакцию хлорметилирования, проводимую при действии
БХМЭ. Следует подчеркнуть, что смесь МХМЭ и БХМЭ, обычно приме-
няемая при хлорметилировании, всегда содержит примесь НС1, так как
получается при пропускании НС1 в формалин и вводится в реакцию без
предварительной очистки.

Из приведенных данных можно заключить, что при хлорметилиро-
вании действием СН2О и НС1 могут образоваться БХМЭ и МХМЭ. Воз-
можно, что в случае хлорметилирования сравнительно активных аро-
матических соединений в водной среде скорость образования эфиров
невелика. В то же время хлорметилирование дезактивированных арома-
тических соединений параформом и хлористым водородом в присутствии
H2SO4, олеума или HSO3C1 протекает фактически в условиях, в которых
препаративно получают БХМЭ 162. Хлорметилирование дезактивирован-
ных ароматических соединений протекает довольно медленно, а потому
скорость реакции вполне может быть сопоставима со скоростью образо-
вания БХМЭ в реакционной среде. Очевидно, в этих случаях механизм
реакции должен отражать участие хлорметиловых эфиров. Вопрос о ме-
ханизме хлорметилирования действием БХМЭ и МХМЭ будет рассмот-
рен ниже. Здесь же будут приведены примеры использования хлорме-
тиловых эфиров для получения соответствующих замещенных аромати-
ческого и гетероароматического рядов.

Хлорметиловые эфиры используются в качестве хлорметилирующих
агентов для разнообразных соединений, сильно отличных по реакцион-
ной способности. При этом активность БХМЭ выше, чем МХМЭ i 3 0; кро-
ме того, она существенным образом зависит от применяемых катализа-
торов, а также различных примесей и добавок. Хлорметилирование ак-
тивных ароматических соединений (углеводородов с ориентантами I ро-
да и гетероциклов) обычно проводят действием МХМЭ в уксусной кис-
лоте 164-166

 Или в сероуглероде в присутствии хлорного олова при 0° ""•168.
Соединения, содержащие одновременно активирующие и дезактиви-
рующие заместители, например, нитрофенолы, хлорметилируют дейст-
вием МХМЭ или БХМЭ при нагревании в присутствии катализаторов,
обычно хлористого цинка 16Э-17°. В тех же условиях можно хлорметили-
ровать и достаточно стабильные ароматические соединения 171. В случае
дезактивированных соединений обычно действуют хлорметиловыми эфи-
рами в серной кислоте или олеуме, иногда в присутствии хлорсульфоно-
вой кислоты 1 7 2 - т .

Хлорметилирование хлорметиловыми эфирами нашло широкое при-
менение для производства ионнообменных смол. С этой целью проводи-
лось хлорметилирование полистирола175-183 *, сополимеров стирола с
дивинилбензолом 185-193

> с Ν,Ν'-арилендиметакриламидами 1 9 4 · 1 9 5 , с 3-ви-
нил-9-алкилкарбазолами 196, сополимера стирола с дивинилбензолом и
акрилонитрилом 48, с этилентерефталатом 197, полифенилизопрена 19S, по-
ли- (я-фениленэтилена) 199 и других полимеров. Хлорметильная группа

* Хлорметилированный полистирол может быть получен также полимеризацией
я-хлорметилстирола 184.

13*
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вступает большей частью в пара-положение и в небольшой степени в
орго-положение ароматического кольца. Часто реакция сопровождается
побочными процессами — происходит сшивание полимерных цепей мети-
леновыми мостиками 1 8 5 · 1 8 7 . Природа катализатора оказывает существен-
ное влияние на скорость реакции и степень превращения сополимера,
т. е. среднее количество хлорметильных групп, приходящихся на одно
бензольное кольцо в молекуле полимера. Сопоставление степени пре-
вращения сополимера за определенный период времени, эффективных
констант скорости и энергий активации реакции позволило расположить
изученные катализаторы по степени их активности в следующий ряд2 0 0:

SnCl4 > ZnCl2 > AlClg > SnCl2 > FeCl3

Применение различных добавок к реакционной смеси — SiCl4

2Oi,
ZrCl4

 202 — существенно увеличивает степень превращения сополимера.
По-видимому, эти добавки регенерируют катализатор в процессе реак-
ции.

Использование хлорметиловых эфиров, а не формальдегида и НС1
в рассмотренных здесь примерах обусловлено тем, что для этих реак-
ций, идущих в гетерогенной среде, решающее значение имеет диффузия
реагентов в полимер. Вместе с тем в иных случаях может играть роль
и то обстоятельство, что в сопоставимых условиях хлорметиловые эфи-
ры, по-видимому, являются более активными хлорметилирующими аген-
тами, чем формальдегид и НС1. Например, при использовании неочи-
щенной смеси МХМЭ и БХМЭ в уксусной кислоте было впервые осу-
ществлено хлорметилирование 2-пиронов 203· 2°4. В то же время, действи-
ем параформальдегида в присутствии НС1 или хлористого цинка полу-
чить хлорметилзамещенные пиронов не удалось.

Заместители влияют на скорость реакции в случае хлорметиловых
эфиров так же, как и при использовании формальдегида и НС1. В част-
ности, заместители с +/-эффектом ускоряют реакцию; например, ско-
рость хлорметилирования действием МХМЭ мезитилена значительно
выше, чем бензола 149. Реакция облегчается, как показано на примере
соединений ряда изоксазола 2 0 5 · 2 0 6 , наличием в ядре таких заместителей,
как метил или фенил, причем во всех случаях хлорметильная группа
направляется в положение 4 изоксазольного цикла аналогично другим
реакциям электрофильного замещения, например, нитрованию, галоге-
нированию 20Т.

Подобные результаты получены также при хлорметилировании
2,1,3-тиа- и селенадиазолов и их гомологов208-211. Хлорметильная группа
вступает в положение 4, как и при хлорировании212·213; реакция облегча-
ется введением электронодонорных и затрудняется при наличии электро-
ноакцепторных заместителей. Активирующее влияние алкильного заме-
стителя обнаружено также в ряду Ы-метил-Ы-арилсульфониланили-
нов 214-217.

Фенолы и алкилфенолы хлорметилируются легко, но сразу же всту-
пают в дальнейшие реакции конденсации 218>219. Поэтому хлорметилза-
мещенных фенолов выделить до настоящего времени не удалось. Рома-
дан с сотр.2 2 0-2 2 1 проводили хлорметилирование п-алкоксибензолов раз-
личными методами и показали, что основным продуктом реакции явля-
ется 2-алкокси-5-алкилбензилхлорид (96—99%), тогда как второй изо-
мер, 5-алкокси-2-алкилбензилхлорид, образуется в количестве 1—4%.

При хлорметилировании метилкарбонатов 4-алкилфенолов действи-
ем МХМЭ в присутствии SbCl5 как катализатора образуется смесь изо-
меров с хлорметильной группой в положениях 2 и 3 с преобладанием
первого изомера 2 2 2 · 2 2 3 . Удалось получить бис-хлорметилзамещенные
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этих соединений лишь при применении БХМЭ и SbCl5 в качестве ката-
лизатора 224. Введение в ядро заместителей, обладающих — /-эффек-
том и тем более —/—Λί-эффектом (как при использовании СН2О +
+ НС1150) затрудняет дальнейшее хлорметилирование. Так, дихлорза-
мещенные бензола хлорметилируются значительно труднее монозаме-
щенных225-229. Попытки ввести хлорметильную группу в 5-нитросалицил-
альдегид общепринятыми методами оказались безуспешными. Реакция
протекает только при использовании избытка А1СЦ и МХМЭ 230.

Для нитропроизводных бензола хлорметилирование осуществляется
в жестких условиях — под действием таких сильных хлорметилирующих
агентов, как БХМЭ и МХМЭ, и в присутствии сильных минеральных
кислот. Например, нитробензол при действии БХМЭ в 96%-ной серной
кислоте (45—50°, в течение недели!) дает с выходом 35% ж-нитробен-
зилхлорид231. Авторы работы232 исследовали взаимодействие п-нитро-
толуола с БХМЭ и показали, что при проведении реакции в хлорсуль-
фоновой кислоте или в 5%-ном олеуме при температуре не выше 10° с
почти количественным выходом получается монохлорметилзамещенное.
Повышение температуры до 40—50° и использование 20—40%-ного оле-
ума или избытка хлорсульфоновой кислоты позволяет ввести в молеку-
лу я-нитротолуола две хлорметильные группы. л-Нитроэтилбензол дает
43% 2-хлорметил-4-нитроэтилбензола и 10% соответствующего 2,6-бис-
хлорметилзамещенного; л-нитроизопропилбензол образует только про-
дукт монозамещения, а и-нитро-грег-бутилбензол вообще не вступает в
реакцию233. Хлорметилирование в ряду фенолов, имеющих дезактиви-
рующие заместители (нитрогруппу или галогены), описано в патентах
234,235_ р е а к ц И Я проводилась в различных условиях: действием быс-хлор-
метилового эфира в серной кислоте234, смесью 55%-ного олеума с
БХМЭ 235. Во всех упомянутых случаях получались соответствующие мо-
нохлорметилзамещенные. Биби и Манн2 3 6, разрабатывая синтез диза-
мещенных тетрагидроизохинолинов, получили в качестве промежуточно-
го продукта 5-нитро-2-(2-хлорэтил)бензилхлорид, обработав 2-(л-нитро-
фенил)этилхлорид БХМЭ в присутствии 20%-ного олеума. Бензойная кис-
лота под действием БХМЭ в серной кислоте превращается в смесь о-,
м- и я-хлорметилзамещенных с преобладанием мета-изомера237 (см.
также2 3 8). Алкилбензойные кислоты в тех же условиях дают бис-хлор-
метилзамещенные23Э. Действием БХМЭ в концентрированной серной
кислоте получены хлорметилзамещенные N-арилфталимидов240; инди-
гоидные красители, как указывается в патенте24i, можно моно- и ди-
хлорметилировать. Имеется большое количество патентов этих же ис-
следователей, посвященных хлорметилированию конденсированных си-
стем, дезактивированных карбонильной группой242-231. Продукты этих
реакций представляют интерес для синтеза красителей 241-247.

Как и при хлорметилировании формальдегидом и IIC1 (см. выше),
при действии МХМЭ группа СН2С1 может направляться в боковую цепь
алкиларилкетонов; реакция проводится в присутствии эфирата трех-
фтористого бора в качестве катализатора 2 5 2 · 2 5 3 . Однако под действием
МХМЭ при использовании избытка (2,5 моля) хлористого алюминия
без растворителя с МХМЭ 254 или под действием БХМЭ в присутствии
1,4 моля А1С13 в хлороформе255 хлорметильная группа вступает в мета-
положение бензольного кольца. В этих условиях ацетофенон существу-
ет в виде комплекса с А1С13

 256, что и является причиной изменения на-
правленности замещения. В случае комплексов 2-ацилтиофенов с А1С1.,
наблюдается также изменение места вступления группы СН2С1 в тиофе-
новый' цикл. При хлорметилировании 2-ацилтиофенов параформальде-
гидом и НС1 образуются смеси 4- и 5-хлорметилзамещенных, близкие к
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эквимолекулярным 1 0 9 - 1 и . Хлорметилирование 2-тиофенальдегида и 2-
ацетотиенона действием МХМЭ в присутствии 2,2 моля А1С13 без раство-
рителя или в хлороформе дает 4-хлорметилзамещенные, содержащие
7% и 2% 5-изомеров соответственно и о · 2 " .

Проведение реакции в растворителе позволяет выявить сущность
происходящих процессов, поскольку создается возможность для варьи-
рования количества хлористого алюминия (при работе без растворите-
ля приходится использовать более двух молей А1С13 на моль карбониль-
ного соединения, так как с меньшим количеством хлористого алюминия
образуются твердые комплексы). При хлорметилировании действием
МХМЭ в присутствии сравнительно небольших количеств А1С13 в хло-
роформе основными продуктами реакции оказываются 5-замещенные (с
использованием 1,8 моля А1С13,—70%, 1,3 моля А1С13—90% и 0,9 моля
А1С13 до 95%) 257. Причиной этого, несомненно, является диссоциация
комплекса карбонильного соединения с А1С13 под действием МХМЭ.
Использование в качестве реагента более слабого основания — БХМЭ—
позволяет получать 4-хлорметилзамещенные, практически не содержа-
щие 5-изомеров, при проведении хлорметилирования в присутствии даже
1,3 моля А1С13

257.
Таким образом, изменение направленности хлорметилирования, как

и в случае других реакций электрофильного замещения 2 5 8 · 2 5 9 , является
следствием образования комплекса с А1С13 (по карбонильной группе)
состава 1:1. Комплексообразование, усиливая электроноакцепторную
способность заместителя, приводит к столь значительной дезактивации
положения 5, что наиболее активным становится положение 4 тиофено-
вого кольца. Сказанное подтверждается данными спектров ПМР и 13С
ЯМР комплексов карбонильных соединений ряда тиофена с А1С13

 2 5 6 · 2 8 0 .
Тот же эффект изменения направленности электрофильного замеще-
ния, в частности, в случае хлорметилирования хлорметиловыми эфира-
ми, достигается и при модификации карбонильной группы путем прото-
нирования или комплексообразования с сильной протонной кисло-
той^. 261 262

Следует указать, что образование комплекса с хлористым алюмини-
ем может оказывать влияние на направленность замещения и в случае
соединений, несущих электронодонорные заместители. Так, действие
МХМЭ на тиоанизол в присутствии избытка А1С13 приводит с высокой
селективностью к n-хлорметилзамещенному. Между тем при недостатке
хлористого алюминия или при проведении реакции с МХМЭ в уксусной
кислоте, а также при хлорметилировании действием формалина и НС1,
продукт наряду с /ш/ж-изомером содержит значительные количества
орто-изомера (до эквимолярного соотношения) 263.

2. К вопросу о механизме хлорметилирования
действием хлорметиловых эфиров

В отличие от хлорметилирования действием формальдегида и НС1
для реакции ароматических соединений с хлорметиловыми эфирами в
литературе имеется мало кинетических данных. За исключением рабо-
ты264, в которой изучена кинетика реакции МХМЭ с п-дихлорбензолом
(но, к сожалению, отсутствует подробный анализ механизма в связи с
полученными авторами кинетическими данными), остальные работы
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посвящены изучению кинетики хлорметилирования полистирола 265 или
его сополимеров 1 9 4 · 2 0 0 . Полученные при этом результаты могут быть ис-
пользованы лишь с существенными оговорками, поскольку кроме непро-
должительной начальной стадии процесса, реакция лимитируется диф-
фузией комплекса МХМЭ с катализатором в полимер.

Возможны два варианта механизма реакции хлорметилирования с
участием хлорметиловых эфиров. В первом из них хлорметилированию
предшествует расщепление хлорметилового эфира ROCH2C1 по связи
С—О под действием протонной или апротопной кислоты, используемой
в качестве конденсирующего агента; при этом хлорметилирующей ча-
стицей служит катион СН2С1281·264. Во втором варианте хлорметиловый
эфир выступает в роли алкилирующего агента с образованием в пре-
дельном случае катиона CIrLOR 1 8 7 · 2 5 7 · 2 6 3 . Возникающее алкоксиметил-
замещенное расщепляется под действием выделяющегося хлористого во-
дорода и апротонной кислоты (ср. 2 е б):

ArH -> ArCH2OR -> АгСН2С1

Реакция в принципе может идти параллельно по этим двум направ-
лениям или любое из них может в зависимости от условий быть основ-
ным, однако второе из них представляется более предпочтительным.
Действительно, алкилирование ароматических соединений простыми ди-
алкиловыми зфирами в присутствии кислот Льюиса идет при повышен-
ных температурах (порядка 150—170°) 267, т.е. в значительно более
жестких условиях, чем хлорметилирование. Кроме того, известно, что
МХМЭ с трудом расщепляется при действии хлористого алюминия (за
100 часов при 55° примерно на 3%), а БХМЭ еще более устойчив268).
С другой стороны, хлорметиловые эфиры имеют исключительно подвиж-
ный атом галогена, способный к обмену по механизму SNl 269, что, веро-
ятно, связано с стабилизирующим действием атома кислорода на ка-
тионный центр 270. Отмеченное выше образование алкоксиметилзамещен-
ных соединений (см. также 257·263·271·272) согласуется со вторым предполо-
жением. Образующиеся алкоксиметилзамещенные, являясь эфирами
бензильного типа, должны сравнительно легко расщепляться при дей-
ствии А1С13 и НС1273·274. Действительно, дополнительная обработка хло-
ристым водородом и А1С13 реакционной смеси, полученной в результате
взаимодействия 2-ацетотиенона с МХМЭ в присутствии 1,3 моля А1С13,
снижает содержание 5-метоксиметил-2-ацетотиенона примерно вдвое 257

(см. также2 5 5). При проведении реакции 2-ацетотиенона с МХМЭ в при-
сутствии эфирата А1С13, т. е в условиях, не способствующих расщепле-
нию метоксиметилзамещенных действием А1С13, в качестве главного
продукта образуется смесь 4- и 5-метоксиметил-2-ацетотиенонов2".
Топчиевым и Ставровской 2 7 5 · 2 7 6 доказано, что при действии БХМЭ в
присутствии ZnCl2 на я-нитрофенол сначала происходит алкилирование
с последующим внутримолекулярным замыканием и образуется 5-нитро-
салигенинметиленовый эфир, который затем уже превращается в 3-хлор-
метил-5-нитросалигенинметиленовый эфир.

Λ Η О—СН., О — С Н ,

? >
-* ч-сн,

I I !
NO., NO, NO.,
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Таким образом, образование хлорметилзамещенных при действии
хлорметиловых эфиров на ароматические соединения в присутствии хло-
ристого алюминия является результатом многостадийного процесса, ко-
торый может быть представлен следующей схемой:

ROCH2C1 -|- AICI3 т= (ROCH»)+ AICI7 (1)

ArH + (ROCH2)+ A1C14 — (ArHCH2OR)+ A1C1" (2)

(ArHCH2OR)+ A1C1* -» ArCH2OR + HC1 + AIC1:, (3)

ArCH2OR + AlClg •-* ArCH2Cl + RC1 + A1OC1 (4)
ArCH2OR + HC1 -* ArCH2Cl + ROH (5)

В случае МХМЭ R = CH3; в случае БХМЭ R = CH2C1 или СН2Аг.
Рассматриваемый процесс включает образование электрофильной ча-

стицы (стадия (1)), которая через σ-комплекс (2) превращается в ана-
лог бензилового эфира ArCH2OR (3); последний дает хлорметилзаме-
щенное при расщеплении под действием А1С13 (4) или НС1 (5). Нельзя
исключить и возможности совместного действия на эфир НО и А1С13 с
промежуточным образованием протежированной формы ArCH2OHR+·
•А1С14~.

Вещества, образующиеся в стадиях (4) и (5), являются «нормальны-
ми» продуктами расщепления простых эфиров под действием А1С13

277 и
НС12 7 3 (о расщеплении бензиловых эфиров кислотами Льюиса см. так-
же2 7 8-2 7 9). Если хлорметилирование действием БХМЭ протекает через
аналог дибензилового эфира (АгСН2)2О, то при его расщеплении как
апротонной кислотой, так и НС1 должны образоваться две молекулы
АгСН2С1280. Расщепление эфира типа АгСН2ОСН2С1 под действием НС1
может привести к хлорметилзамещенному и нестабильному хлорметано-
лу НОСН2С1; последний непосредственно или после дегидратации с об-
разованием БХМЭ способен служить хлорметилирующим агентом. Та-
ким образом, в реакции могут быть использованы обе группы СН2С1
исходного БХМЭ 2 5 5 · 2 5 7 .

Приведенная схема не дает, однако, полного представления о рас-
сматриваемом процессе, поскольку в ней не отражено возникновение ди-
арилметанов и быс-хлорметилзамещенных (подробнее см.2 5 5). В принци-
пе такой же механизм вероятен и при проведении реакции в сильных
минеральных кислотах. Как показано в работе 14\ хлорметилалкиловые
эфиры в суперкислой среде протежируются по кислороду, а образовав-
шиеся протежированные формы выше —60° дегидрохлорируются, пре-
вращаясь в алкоксиметилкатионы *:

C1CH2OR F S ° 8 o ' S b F ' C1CH 2 -O-R -~-> CH 2= OR

Η

* Подобного типа механизм предложен284 также для хлорметилирования и бром-
метилирования действием 1-хлор-<^[хлор(бром)метокси]бутанов и \,4-биа[хлор-
(бром)метокси]бутанов, недавно описанных в качестве эффективных агентов галоген-
метилирования 285. Их особенностью является возможность промежуточного образова-
ния и участия в реакции хлор (бром) метилтетрагидрофуранониевых ионов, что под-
тверждено обнаружением284 с помощью спектра ПМР такого иона, возникающего в
результате следующей реакции, идущей при —50° в SO2: ClCI^C^CH^Cl+SbCls-»-

+ /СН2—СН2

-»-С1СН2— О ^ ι SbCr~ Галогеналкилирование этими реагентами идет с высо-
\ С Н 2 - С Н 2

кими выходами в присутствии SnCl4 или ZnBr2. Преимуществом новых агентов перед
не менее активным БХМЭ является меньшая летучесть и, следовательно, меньшая опае-
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Существенным аргументом против рассматриваемого механизма,
включающего атаку алкоксиметильным катионом, является то обстоя-
тельство, что этот ион может не только реагировать по атому С с обра-
зованием алкоксиметилзамещенного, но и выступать в качестве мети-
лирующего агента (с выделением формальдегида) 281. В этой связи мож-
но обсудить механизм хлорметилирования, не предусматривающий об-
разования алкоксиметильного или хлорметильного катионов, в котором
хлорметилирующей частицей является комплекс хлорметилового эфира
с протонной или апротонной кислотой. Подобные механизмы выдвига-
лись в ряде работ2 8 2 '2 8 3. В сущности, в упомянутых статьях предполага-
ется, что в ароматическое кольцо вступает фрагмент СН2С1 из комплек-
са МХМЭ с кислотой Льюиса. Один из таких механизмов 283 приведен
ниже:

SnCl4 + О ^ = > O---SnCI4

СИ, (Ml,

•Η СП2С1 И

,O---SnCld Z^^L |( , -И—>-С1[2С1

( Л ' з R ^ V-SnCI 4

CII3

Π-комплекс
CY\2V,\

t y - J ^ H [Snci 4 -()(:H 3 r
О-комплекс

Если принять этот или подобный механизм, то не находит объясне-
ния образование метоксиметилзамещенных, о котором шла речь выше.
По-видимому, механизм реакции должен учитывать оба возможных
первичных процесса — хлорметилирование и алкоксиметилирование.

Несмотря на большое значение хлорметилирования и широкое его
использование для препаративных целей, лишь частично отраженное в
настоящем обзоре, многие существенные стороны этой реакции, прежде
всего связанные с ее механизмом, еще недостаточно выяснены. Такое
положение обусловлено, по-видимому, большой сложностью и неодноз-
начностью процесса, в результате которого наряду с монохлорметилза-
мещенными могут получаться не только дизамещенные, но и продукты
другого типа — диарилметаны и бензиловые эфиры. Вместе с тем боль-
шие возможности синтеза на основе хлорметилзамещенных обусловли-
вают появление все новых работ, посвященных как модификации мето-
дов, так и изучению механизма реакции хлорметилирования.
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